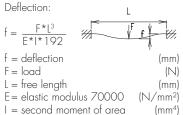
Positioning system DSB 200

Function:

146

The guide body consists of an aluminium square profile with two rail guides integrated into it, with four, six or eight runner blocks depending on the load and carriage type. The DSB linear motor axis is a highly dynamic short stroke unit, which is based on the principle of a linear three-phase synchronous motor. The secondary part is equipped with permanent magnets and serves as rotor. The primary part as stator has a three-phase winding. The symmetrical design of the motor results in a neutralisation of the magnetic attraction between stator and rotor and thus enables an optimum relief of the bearing. Combined with the elimination of moved cables, this results in an excellent lifetime of the axis. With a max. cooling capacity requirement of 0.5 – 1.0 l of water per minute (depending on the motor size), the temperature will rise by a max. of 10 degrees Kelvin.

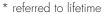

Fitting position: Carriage mounting: By T-slots. Unit mounting: Carriage support:

As required

By T-slots and mounting sets. The linear axis can be combined with any T-slot profile. In the standard version, the carriage runs on 4 runner blocks which can be serviced at a central servicing position. For longer carriages the number of runner blocks can be increased. Repeatability ± 0,05mm mm. Repeated accuracy max. ± 0,05mm

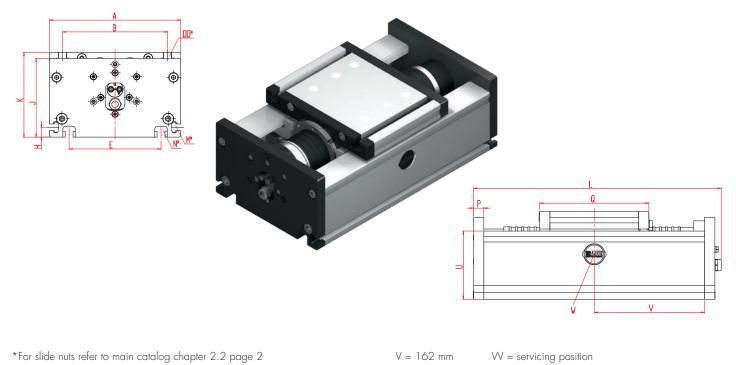
Forces and torques	Size		200							
Fz	Motor size	1	2	3	4					
Mx Fx Fx	permitted dyn.Forces*	5000 km / 10000 km								
	F _a (N)		10000 / 8000							
	F _{zm} (N)		15600 / 11080							
ry My Fa	F _z (N)		20600	/ 14600						
ru V	M _x (Nm)		1285	/ 815						
	M _v (Nm)		1375	/ 980						
$F_z = external force by load$	M _z (Nm)		1345	/ 960						
F_{a} = magnetic attraction force	C (N)		22	800	U					
$F_{zm} = maximum$ force in conside-	Number of runner blocks	4	4	4	4					
ration of motor power	All forces and torques related to the following	g:								
$F_{zm} = F_{z} + F_{a}$	existing values <u>Fy</u> + <u>Fzm</u> + <u>Mx</u> +	My Mz I	5							
	table values $\overrightarrow{Fy_{dyn}} + \overrightarrow{Fzm_{dyn}} + \overrightarrow{Mx_{dyn}} + \overrightarrow{My_{dyn}} + \overrightarrow{Mz_{dyn}} \leq 1,3$									
	Motor specifications Fx									
	Motor size	1	2	3	4					
	Carriage weight (kg)	4,66	5,06	5,46	5,86					
	Weight primary part (kg)	4,4	4,9	4,9	4,9					
	permanent force without Watercooling (N)	121	152	182	212					
	permanent force with Watercooling (N)	561	700	839	978					
	Max force (N) 1s	868	1086	1303	1520					
	Moving force without current									
	N	2,2	2,5	2,8	3,1					
	Geometrical moments of inertia of aluminium	profile								
	l _× mm⁴	4,81 ×10°								
	l, mm ⁴	26,0 x10 ⁶								
	ý.									

Formula: DSB


Nominal lifetime:

 $L = \left(\frac{C}{F}\right)^3 \times 10^5$ C = dynamic load faktor (N)(N)

F = middle load



Positioning system DSB 200

Dimensions (mm)

Size	Basic length L	A	В	E	н	l l	к	M fo		OC		· ι	J		Motor siz	ze
DSB 200	353,5	200	160	140	15	12	0 129	7 M	3 M 1	D M I	0 13	5 10)0	18,0/19	<u>1/2/3/</u> 7,0 /19,	<u>′ 4</u> 4 /19,8 kg
											n					
		_														
 		C	•	otor siz		(2)	motor siz	- ⁻	(3) moto	- 6170 3	(4)	motor si	70 /			
		C	•	notor siz motor s		(2)	motor siz		(3) moto			motor si				
			•		ize 1		B	Basic ler	gth, car	riage le	ngth ar	nd strok	e			
		[† (1) 		iize 1 mot	or size	e 1	Basic ler me	gth, car ptor size	riage le 2	ngth ar m	nd strok otor siz	e e 3		otor siz	
		[iize	ize 1 mol	or size	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke	ngth ar m L	nd strok otor siz Q	e e 3 Stroke	L	Q	Stroke
			 	iize	iize 1 mot	or size	e 1	Basic ler me	gth, car ptor size	riage le 2	ngth ar m	nd strok otor siz	e e 3		1	
		C	 	iize	ize 1 mol	or size	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke	ngth ar m L	nd strok otor siz Q	e e 3 Stroke	L	Q	Stroke
			 	iize	ize 1 mol	or size	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke 137,5	ngth ar m L 381	nd strok otor siz Q 160	e 3 Stroke 110	L 381	Q 160	Stroke
			 	iize	ize 1 mol	or size	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke 137,5 For s The	ngth ar m L 381 standard	nd strok otor siz Q 160 carriag	e 3 Stroke 110 e length s	L 381 ee 'Q' in d in any	Q 160 n table.	Stroke 82,5
			 	iize	ize 1 mol	or size	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke 137,5 For s The leng	ngth ar m L 381 standard carriage th upon	ad strok otor siz Q 160 carriag es can be request;	e 3 Stroke 110 e length s e delivere the longe	L 381 ee 'Q' in d in any er the ca	Q 160 n table. non-star rriage, th	Stroke 82,5
			 	iize	ize 1 mol	or size	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke 137,5 For s The leng the la	ngth ar m L 381 standard carriage th upon oad cap	ad strok otor siz Q 160 carriag es can be request; pacity. Fo	e 3 Stroke 110 e length s	L 381 ee 'Q' in d in any er the car controlle	Q 160 n table. non-star rriage, th rs and lin	Stroke 82,5
			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ize	ize 1	Q 160	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke 137,5 For s The leng the la	ngth ar m L 381 standard carriage th upon oad cap	ad strok otor siz Q 160 carriag es can be request; pacity. Fo	e 3 Stroke 110 e length s e delivere the longe or digital d	L 381 ee 'Q' in d in any er the car controlle	Q 160 n table. non-star rriage, th rs and lin	Stroke 82,5
			 	ize	ize 1 mol	Q 160	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke 137,5 For s The leng the la	ngth ar m L 381 standard carriage th upon oad cap	ad strok otor siz Q 160 carriag es can be request; pacity. Fo	e 3 Stroke 110 e length s e delivere the longe or digital d	L 381 ee 'Q' in d in any er the car controlle	Q 160 n table. non-star rriage, th rs and lin	Stroke 82,5
			(1) (1) (1) (1) (1) (1) (1) (1)	ize 200 3	ize 1	Q 160	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke 137,5 For s The leng the la	ngth ar m L 381 standard carriage th upon oad cap	ad strok otor siz Q 160 carriag es can be request; pacity. Fo	e 3 Stroke 110 e length s e delivere the longe or digital d	L 381 ee 'Q' in d in any er the car controlle	Q 160 n table. non-star rriage, th rs and lin	Stroke 82,5
B 200		0 0 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ize 200 3	ize 1	Q 160	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke 137,5 For s The leng the la	ngth ar m L 381 standard carriage th upon oad cap	ad strok otor siz Q 160 carriag es can be request; pacity. Fo	e 3 Stroke 110 e length s e delivere the longe or digital d	L 381 ee 'Q' in d in any er the car controlle	Q 160 n table. non-star rriage, th rs and lin	Stroke 82,5
	1 2 3 4	0 0 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ize 200 3	ize 1	Q 160	e 1 Stroke	Basic ler ma	gth, car otor size Q	riage le 2 Stroke 137,5 For s The leng the la	ngth ar m L 381 standard carriage th upon oad cap	ad strok otor siz Q 160 carriag es can be request; pacity. Fo	e 3 Stroke 110 e length s e delivere the longe or digital d	L 381 ee 'Q' in d in any er the car controlle	Q 160 n table. non-star rriage, th rs and lin	Stroke 82,5

Rost frei

EQ

HHK Modultechnik 9.1