Positioning system DSM 160P, 200P

Specifications

Linear motor drive

Function:

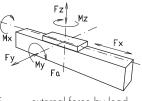
This unit consists of a rectangular aluminium profile with 2 integrated rail guidance. The linear motor DSM unit is based on the principle of a linear, synchronous AC motor.

The guiding profile is fitted with permanent magnets as stator (secondary part). The carriage is fitted with the actuator (primary part). The magnetic attraction causes a force between carriage and guiding profile also in the absence of current. This force can be used for the initial tension of the bearings. Several carriages (primary parts) can be driven independently on one guiding profile. A special design of the carriage geometry results in the guiding profile being covered. This prevents small parts from falling into the system, so that clean-room applications are possible.

Fitting position: Carriage mounting: By threaded holes. Unit mounting: Carriage support:

As required. Max. length 3.000 mm without joints.

By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.


In the standard version, the carriage runs on 4 runner blocks which can be serviced at a central servicing

position. For longer carriages the number of runner blocks can be increased.

Motor specifications

Repeatability \pm 0,05mm mm. Repeated accuracy max. \pm 0,05mm up to 3.000 mm

Forces and torques

external force by load

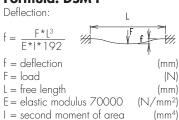
= magnetic attraction force

maximum force in conside-

ration of motor power

= $F_z + F_a$

Size		160		200				
Motor size	1	2	3	1	2	3		
permitted dyn.Forces*		10000 km		10000 km				
F _a (N)	1200	1800	5500	3600	5500	11000		
F _{zm} (ℕ)	1590	2800	<i>7</i> 030	4990	7640	13860		
$F_z(N)$	1 <i>775</i>	1775	3550	4092	4092	8184		
M_{x} (Nm)	160	128	153	357	231	462		
M _v (Nm)	373	351	532	<i>7</i> 69	556	1540		
M _z (Nm)	222	261	328	585	654	906		
C (N)								
Number of runner blocks	4	4	8	4	4	8		


All forces and torques related to the following:

existing values $\frac{F_{y}}{F_{y_{dyn}}} \quad \bullet \quad \frac{F_{zm}}{F_{zm_{dyn}}} \quad \bullet \quad \frac{Mx}{Mx_{dyn}} \quad \bullet \quad \frac{My}{My_{dyn}} \quad \bullet \quad \frac{Mz}{Mz_{dyn}} \quad \leq 1.5$ table values

Motor specifications FX								
Motor size	1	2	3	1	2	3		
Carriage weight (kg)	4,8	5,3	<i>7</i> ,1	10,9	11,4	16,9		
Weight primary part (kg)	1,4	3,7	5,2	4,5	6,4	8,4		
permanent (N)	115	271	406	383	574	<i>7</i> 66		
Max. (N) 1s	323	323 607		868	1301	1735		
Moving force without current								
Ν	30	30	60	40	40	80		
Geometrical moments of inert	ia of alumi	nium profi	le					
l _x mm⁴								
l _v mm⁴	12,3 x10° 26,0 x10°							
Flastic modulus NI /mm²		70000		70000				

^{*} referred to life-time

Formula: DSM P

Nominal lifetime:

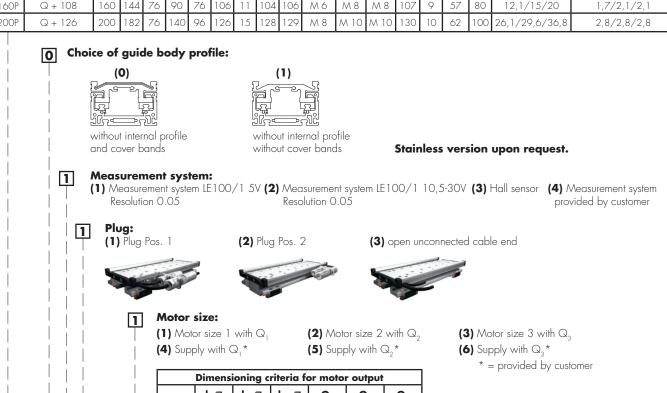
$$L = \left(\frac{C}{F}\right)^3 \times 10^5$$

C = Dynamic load faktor (N)F = Middle load



Positioning system DSM 160P, 200P

Dimensions (mm)



*For slide nuts refer to chapter 2.2 page 2

V = Q + 100 mm

W = servicing position

			1 0							-						. 0 1			
Size	Basic length L	A	В	С	E	F	G	н	J	К	M for	N for	O for	R	Ρl	P2	U	Basic weight Motor size 1/2/3	Weight per 100mm Motor size 1/2/3
DSM 160P	Q + 108	160	144	<i>7</i> 6	90	<i>7</i> 6	106	11	104	106	M 6	M 8	M 8	107	9	57	80	12,1/15/20	1,7/2,1/2,1
DSM 200P	Q + 126	200	182	76	140	96	126	15	128	129	M 8	M 10	M 10	130	10	62	100	26.1/29.6/36.8	2.8/2.8/2.8

Dimensioning criteria for motor output											
	اٍ □	b _p □	h _{ps} □	Q ₁	Q ₂	Q_3					
160	Q-70	<i>7</i> 1	50	316	360	461					
200	Q-70	85	62	410	444	610					

 $I_p = \text{length primary part}; \ b_p = \text{width primary part}; \ h_{ps} = \text{height primary part} + \text{height secondary part} + \text{interspaces primary-/secondary part}$

1500 Basic length + stroke = total length

length upon request; the longer the carriage, the greater the load capacity. For digital controllers and linear encoder refer to chapter 9.1 page 12.

For standard carriage length see 'Q' in table. The carriages can be delivered in any non-standard

| DSM | 160P | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 01500 | | Pos. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Sample ordering code:

DSM160P, Bahr Modultechnik Linear motor, standard body profile, Measurement system LE100/1 5V, Plug Pos. 1, motor size 1, 1094mm stroke

