Positioning system QSSZ 60, 80

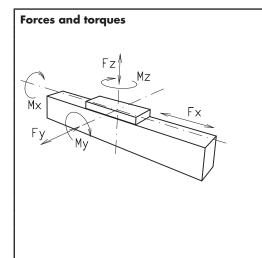
Belt drive

Function:

This linear unit consists of a square aluminium profile with integrated rail guidance. The carriage, which has runner blocks, is driven by a timing belt. Each standard pulley includes a coupling claw on one side and is equipped with maintenance-free ball bearings. Belt tension can be readjusted by a simple screw adjustment device in the carriage. This device can also be used for symmetrical adjustment of two or more linear units running parallel.

Fitting position:
Carriage mounting:
Unit mounting:
Belt performance:
Carriage support:

As required. Max. length 3.000 mm without joints. By T-slots.


By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.

Size

HTD with steel reinforcement, no backlash when changing direction, repeatability \pm 0,1 mm.

In the standard version, the carriage runs on 2 runner blocks which can be serviced at a central servicing position.

For longer carriages the number of runner blocks can be increased.

permitted dyn. forces*	5000 km	10000 km	5000 km	10000 km			
F _x (N)	97	87	223	200			
F _v (N)	350	240	890	630			
F _z (N)	880	625	2100	1500			
M _x (Nm)	8	6	26	18			
M, (Nm)	26	18	77	55			
$M_z(Nm)$	25	17	74	52			
All forces and torques	related to	the following	ng:				
existing values Fy	+ Fz +	Mx _	My <u> </u>	. <1			
		Mx_{dyn} Λ		m == •			
No-load torque							
Nm	1	,0	1,4				
Speed							
(m/s) max		3	3				
Tensile force							
permanent (N)	Lifetime calculation see the internet						
Geometrical moments	of inertia o	f aluminiun	n profile				
l _x mm⁴			16,5	x10 ⁵			
Ĵ mm⁴			′x10⁵				
Elastic modulus N/mm²			700	000			

60

* referred to life-time

80

Formula: QSSZ

Driving torque:

$$M_{a} = \frac{F * P * S_{i}}{2000 * \pi} + M_{leer}$$

$$M * n$$

 $\begin{array}{lll} F &=& \text{force} & & \text{(N)} \\ P &=& \text{pulley action perimeter} & & \text{(mm)} \\ S_i &=& \text{safety factor 1,2...2} \\ M_{\text{leer}} &=& \text{no-load torque} & & \text{(Nm)} \\ n &=& \text{rpm pulley} & & \text{(min^{-1})} \\ M_a &=& \text{driving torque} & & \text{(Nm)} \\ \end{array}$

= motor power

Deflection: $f = \frac{F^*L^3}{E^*I^*192}$ $f = \text{deflection} \qquad (mm)$

f = deflection (mm)
F = load (N)
L = free length (mm)
E = elastic modulus 70000 (N/mm²)
I = second moment of area (mm⁴)

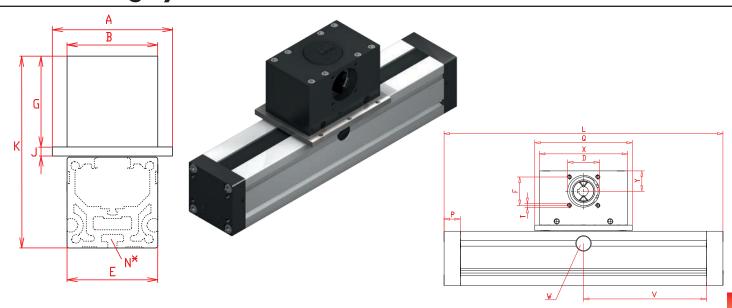
Nominal lifetime:

$$L = \left(\frac{C}{F}\right)^3 \times 10^5$$

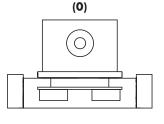
L = Lifetime in meters

C = Dynamic load factor (N)F = Medium load (N)

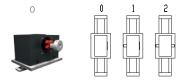
´ 4


(KVV)

Positioning system QSSZ 60, 80


*For slide nuts refer to chapter 2.2 page 2

V = Q + 100 mm W = servicing position


Size	Basic length L	A	В	D	E	F	G	J	к	N for	Р	Q	т	х	Y	Basic weight	Weight per 100 mm
QSSZ 60	168	60	60	37	60	32	65	7,50	134,5	M 5	20	124	M 5	110	20	3,30 kg	0,47 kg
QSSZ 80	200	106	80	47	80	42	80	8	169	M 6	24	144	M 6	130	30	5,7 kg	1,02 kg

Choice of guide body profile: (0) Standard (1) corrosion-protected screws (4) expanded corrosion-protected version (depending on the availability of components)

Drive version:

Size	Shaft ø h6 x length	Key		
60	10 x 27	3x3x25		
80	14 × 35	5x5x28		

8 is as 0, but with coupling claws on both sides. The standard version is supplied without shaft. A shaft can be retrofitted by inserting it into the pulley bore and securing it with 2 locking rings.

Belt table / Coupling claw

Code		c:	n-la		Cli	
N	No. Size Belt		mm/rev.	Coupling		
0	3	60	5M15	100	20	9
0	7	80	5M25	130	26	14

Basic length + stroke = total length

For additional accessories refer to chapter 2.2 - 3.2

Sample ordering code: QSSZ80, standard body profile, standard carriage, coupling claw on one side, 1300 mm stroke

0 0 7 1 01500

